Alternativer Identifier:
(KITopen-DOI) 10.5445/IR/1000148057
Verwandter Identifier:
-
Ersteller/in:
Schlagenhauf, Tobias [Institut für Produktionstechnik]
Beitragende:
-
Titel:
Evolution of Surface Defects on Ball Screw Drive Spindles for intelligent Prognostics and Health Management Systems
Weitere Titel:
-
Beschreibung:
(Abstract) The dataset shows the development of 82 surface defects (pits) over the operating time of Ball Screw Drives. The name of the images is structured as follows: XX_XX_YYMMDDHHMMSS_XX_XX. Here X is some identifier, which is not important in this context. The dataset is especially suited to investigate the development of surface defects on ball screw drive spindles. The dataset mainly addresses the machine learning research community for engineering and computer science to build intelligent models for surface defect detection and forecasting in the context of prognostics and health management (PHM). Each folder consists the evolution of one pit.
(Abstract) The dataset shows the development of 82 surface defects (pits) over the operating time of Ball Screw Drives. The name of the images is structured as follows: XX_XX_YYMMDDHHMMSS_XX_XX. Here X is some identifier, which is not important in this context. The dataset is especially suited to investigate the development of surface defects on ball screw drive spindles. The dataset mainly addresses the machine learning research community for engineering and computer science to build intelligent models for surface defect detection and forecasting in the context of prognostics and health management (PHM). Each folder consists the evolution of one pit.
(Technical Remarks) The dataset shows the development of 82 surface defects (pits) over the operating time of Ball Screw Drives. The name of the images is structured as follows: XX_XX_YYMMDDHHMMSS_XX_XX. Here X is some identifier, which is not important in this context. The dataset is especially suited to investigate the development of surface defects on ball screw drive spindles. The dataset mainly addresses the machine learning research community for engineering and computer science to build intelligent models for surface defect detection and forecasting in the context of prognostics and health management (PHM). Each folder consists the evolution of one pit.
Schlagworte:
Ball Screw Drives
Condition Monitoring
Prognostics and Health Management (PHM)
Machine Learning
Intelligent Manufacturing
Zugehörige Informationen:
-
Sprache:
-
Erstellungsjahr:
Fachgebiet:
Engineering
Objekttyp:
Dataset
Datenquelle:
-
Verwendete Software:
-
Datenverarbeitung:
-
Erscheinungsjahr:
Rechteinhaber/in:
Schlagenhauf, Tobias
Förderung:
-
Name Speichervolumen Metadaten Upload Aktion

Zugriffe der letzten sechs Monate

Aufrufe der Datenpaket-Seite

262


Downloads des Datenpakets

8


Gesamtstatistik

Zeitraum Aufrufe der Datenpaket-Seite Datenpaket heruntergeladen
Sept. 2024 20 0
Aug. 2024 37 0
Juli 2024 57 1
Juni 2024 42 0
Mai 2024 50 6
Apr. 2024 56 1
Vorher 300 12
Gesamt 562 20
Status:
Publiziert
Eingestellt von:
kitopen
Erstellt am:
Archivierungsdatum:
2023-06-22
Archivgröße:
56,4 GB
Archiversteller:
kitopen
Archiv-Prüfsumme:
172faeaed0c61fd1c2522f3a58c4feec (MD5)
Ende des Embargo-Zeitraums:
-