Alternativer Identifier:
(KITopen-DOI) 10.5445/IR/1000131109
Verwandter Identifier:
-
Ersteller/in:
Dörich, Benjamin https://orcid.org/0000-0001-5840-2270 [Dörich, Benjamin]
Beitragende:
(Other)
Hochbruck, Marlis [Hochbruck, Marlis]
Titel:
Numerical experiments to "Exponential integrators for quasilinear wave-type equations"
Weitere Titel:
-
Beschreibung:
(Abstract) This code was used for the numerical experiments in the preprint (CRC Preprint 2021/12; URL: https://www.waves.kit.edu/downloads/CRC1173_Preprint_2021-12.pdf) and in the paper "Exponential integrators for quasilinear wave-type equations" by B. Dörich and M. Hochbruck.
(Technical Remarks) This program is intended to reproduce the results from the preprint "Exponential integrators for quasilinear wave-type equations" by Benjamin Dörich and Marlis Hochbruck The codes generates the lines in Figure 1 #### Requirements The program is tested with 1) Ubuntu 16.04.7 LTS and Python 3.7.6 and the following version of its modules: - numpy - 1.15.4 - scipy - 1.4.1 - matplotlib - 3.2.1 - tikzplotlib - 0.9.6 - dolfin - 2018.1.0 - fenics - 2018.1.0 2) Ubuntu 18.04.5 LTS and Python 3.6.9 and the following version of its modules: - numpy - 1.19.2 - scipy - 1.5.1 - matplotlib - 3.3.2 - tikzplotlib - 0.9.4 - dolfin - 2019.2.0.dev0 - fenics - 2019.2.0.dev0 #### Figure 1 In the folder "DoeH21_quasilinear" open a console and run the following commands after each other. 1) Run "python3 1_generate_initial_matrices.py" 2) Run "python3 2_paper_run_reference_solution.py" 3) Run "python3 3_paper_run_Euler.py" 4) Run "python3 4_paper_run_midpoint.py" After running the calculations, the errors can be found in the folder "DoeH21_quasilinear/extracted_data/". (a) settings_* contains the information of the config file (b) infos_* contains the computed errors (c) plot_* contains a tikz-file which gives the plot for the Euler and the midpoint rule separately.
Schlagworte:
error analysis
time integration
quasilinear evolution equations
a-priori error bounds
wave equation
Maxwell's equations
Zugehörige Informationen:
-
Sprache:
-
Erstellungsjahr:
Fachgebiet:
Mathematics
Objekttyp:
Dataset
Datenquelle:
-
Verwendete Software:
-
Datenverarbeitung:
-
Erscheinungsjahr:
Rechteinhaber/in:
Förderung:
-
Name Speichervolumen Metadaten Upload Aktion
Status:
Publiziert
Eingestellt von:
kitopen
Erstellt am:
Archivierungsdatum:
2023-06-24
Archivgröße:
56,3 kB
Archiversteller:
kitopen
Archiv-Prüfsumme:
244a44cad160c9a7623956d839d21bd3 (MD5)
Embargo-Zeitraum:
-