Alternativer Identifier:
(KITopen-DOI) 10.5445/IR/1000085083
Verwandter Identifier:
-
Ersteller/in:
Wellmann, Marie-Constanze [Wellmann, Marie-Constanze]
Beitragende:
(Other)
Barrett, Andrew I. [Barrett, Andrew I.]

(Other)
Johnson, Jill S. [Johnson, Jill S.]

(Other)
Kunz, Michael https://orcid.org/0000-0002-0202-9558 [Kunz, Michael]

(Other)
Vogel, Bernhard [Vogel, Bernhard]

(Other)
Carslaw, Ken S. [Carslaw, Ken S.]

(Other)
Hoose, Corinna https://orcid.org/0000-0003-2827-5789 [Hoose, Corinna]
Titel:
Training data and emulators for the analysis of sensitivity of deep convective clouds and hail to environmental conditions
Weitere Titel:
-
Beschreibung:
(Abstract) This study aims to identify model parameters describing atmospheric conditions such as wind shear and CCN concentration which lead to large uncertainties in the prediction of deep convective clouds. In an idealized setup of a cloud-resolving model including a two-moment microphysics scheme we use the approach of statistical emulation to allow for a Monte Carlo sampling of the parameter space, which enables a comprehensive sensitivity analysis. We analyze the impact of six uncertain input parameters on cloud properties (vertically integrated content of six hydrometeor classes), precipitation and the size distribution of hail. This dataset contains the processed model output and the generated emulators for three trigger mechanisms of deep convection (warm bubble, cold pool, orography).
(Technical Remarks) The csv-files contain the processed model output (spatio-temporal means or maximum values) for output parameters of interest. This dataset was used to train the emulators which are also included as R workspaces. The R package "Sensitivity" is necessary to perform sensitivity analyses using the emulators.
Schlagworte:
-
Zugehörige Informationen:
-
Sprache:
-
Erstellungsjahr:
Fachgebiet:
Geological Science
Objekttyp:
Dataset
Datenquelle:
-
Verwendete Software:
-
Datenverarbeitung:
-
Erscheinungsjahr:
Rechteinhaber/in:
Wellmann, Marie-Constanze
Förderung:
-
Name Speichervolumen Metadaten Upload Aktion

Zugriffe der letzten sechs Monate

Aufrufe der Datenpaket-Seite

44


Downloads des Datenpakets

0


Gesamtstatistik

Zeitraum Aufrufe der Datenpaket-Seite Datenpaket heruntergeladen
Okt. 2023 1 0
Sep. 2023 10 0
Aug. 2023 8 0
Juli 2023 8 0
Juni 2023 17 0
Mai 2023 0 0
Vorher 0 0
Gesamt 44 0
Status:
Publiziert
Eingestellt von:
kitopen
Erstellt am:
Archivierungsdatum:
2023-06-21
Archivgröße:
5,3 MB
Archiversteller:
kitopen
Archiv-Prüfsumme:
f83d9e89759dd88eca01aee764030d8b (MD5)
Ende des Embargo-Zeitraums:
-