Alternativer Identifier:
-
Verwandter Identifier:
Ersteller/in:
Polomoshnov, Maxim https://orcid.org/0009-0004-6954-2067 [Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)]

Mukundan Nair, Nitheesh https://orcid.org/0000-0003-2249-6863 [Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)]
Beitragende:
(Supervisor)
Hernández-Sosa, Gerardo https://orcid.org/0000-0002-2871-6401 [Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT), Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT), Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)]

(Supervisor)
Reischl, Markus https://orcid.org/0000-0002-7780-6374 [Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)]
Titel:
Datasets to the bidirectional process prediction in the laser-induced-graphene production using blackbox deep learning
Weitere Titel:
-
Beschreibung:
(Abstract) Machine-learning techniques are highly advantageous for automation of a manufacturing process, since they facilitate prediction of the process parameters and product properties. However, the need for process-specific prior knowledge, for elaboration of complex analytical models, and for collection o...

(Technical Remarks) The datasets encompas collected training, validation, and test data as well as related mesuared LIG properties. Five dataset include (A) 500 training lines, (B) 100 validation lines and (C) 13 validation rectangles, (D) 50 twofold-control lines, and (E) 10 printed lines used for the demonstrator-cir...
Schlagworte:
laser-induced graphene
flexible electronics
machine learning
deep learning
bidirectional prediction
blackbox prediction
Zugehörige Informationen:
-
Sprache:
-
Erstellungsjahr:
Fachgebiet:
Computer Science
Objekttyp:
Dataset
Datenquelle:
-
Verwendete Software:
-
Datenverarbeitung:
-
Erscheinungsjahr:
Rechteinhaber/in:
Förderung:
-
Name Speichervolumen Metadaten Upload Aktion
Status:
Publiziert
Eingestellt von:
kitopen
Erstellt am:
Archivierungsdatum:
2025-10-23
Archivgröße:
61,4 kB
Archiversteller:
kitopen
Archiv-Prüfsumme:
4e2ecb4930ec11172d7d2f0391db7cd2 (MD5)
Embargo-Zeitraum:
-