Alternativer Identifier:
-
Verwandter Identifier:
Ersteller/in:
Polomoshnov, Maxim https://orcid.org/0009-0004-6954-2067 [Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)]

Ashif, Nowab Reza Md [Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)]

Reischl, Markus https://orcid.org/0000-0002-7780-6374 [Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)]
Beitragende:
-
Titel:
Natural and synthetic datasets for rapid deep-learning-based optical measurement of printed linear structures
Weitere Titel:
-
Beschreibung:
(Abstract) Conventional optical measurement techniques are beneficial in manufacturing processes due to their fast and non-intrusive operation. However, they require sophisticated and expensive equipment as well as increased personnel qualification. While the integration of machine learning contributes to alle...

(Abstract) Conventional optical measurement techniques are beneficial in manufacturing processes due to their fast and non-intrusive operation. However, they require sophisticated and expensive equipment as well as increased personnel qualification. While the integration of machine learning contributes to alle...

(Technical Remarks) The archive includes two datasets. The dataset of 20,000 synthetic images was generated for the neural-network training. Filename structure: [sequence number]-[edge class]-[line width in mpx]-[SD in mpx]-[contrast level]-[noise level]. The dataset of 200 natural images was collected to test pre-trai...
Schlagworte:
-
Zugehörige Informationen:
-
Sprache:
-
Erstellungsjahr:
Fachgebiet:
Computer Science
Objekttyp:
Dataset
Datenquelle:
-
Verwendete Software:
-
Datenverarbeitung:
-
Erscheinungsjahr:
Rechteinhaber/in:

Ashif, Nowab Reza Md
Förderung:
-
Name Speichervolumen Metadaten Upload Aktion
Status:
Publiziert
Eingestellt von:
kitopen
Erstellt am:
Archivierungsdatum:
2025-04-23
Archivgröße:
1,6 GB
Archiversteller:
kitopen
Archiv-Prüfsumme:
6bbba2929771f14c6ce48672c2927de8 (MD5)
Embargo-Zeitraum:
-